Abstract
Graphical abstract

Keywords
1. Introduction
- Cai F.
- Pu X.
- Qi X.
- Lynch V.
- Radha A.
- Ready J.M.
- Rivera-Fuentes P.
- Diederich F.
- Ma S.
- Yu S.
- Ma S.
- Ye J.
- Ma S.
- Hoffmann-Roder A.
- Krause N.
- Pu X.
- Qi X.
- Ready J.M.
- Cai F.
- Pu X.
- Qi X.
- Lynch V.
- Radha A.
- Ready J.M.
- Rivera-Fuentes P.
- Diederich F.
- Ma S.
- Yu S.
- Ma S.
- Ye J.
- Ma S.
- Hoffmann-Roder A.
- Krause N.
- Pu X.
- Qi X.
- Ready J.M.
- Ma S.
- Yu S.
- Ma S.
- Ye J.
- Ma S.
- Hoffmann-Roder A.
- Krause N.
- Pu X.
- Qi X.
- Ready J.M.
- Cai F.
- Pu X.
- Qi X.
- Lynch V.
- Radha A.
- Ready J.M.
- Rivera-Fuentes P.
- Diederich F.
- Ma S.
- Yu S.
- Ma S.
- Ye J.
- Ma S.
- Hoffmann-Roder A.
- Krause N.
- Pu X.
- Qi X.
- Ready J.M.
- Cai F.
- Pu X.
- Qi X.
- Lynch V.
- Radha A.
- Ready J.M.
- Rivera-Fuentes P.
- Diederich F.
- Ma S.
- Yu S.
- Ma S.
- Ye J.
- Ma S.
- Brummond K.M.
- DeForrest J.E.
- Ogasawara M.
- Neff R.K.
- Frantz D.E.
- Ye J.
- Ma S.
- Chu W.-D.
- Zhang Y.
- Wang J.
- Brummond K.M.
- DeForrest J.E.
- Ogasawara M.
- Neff R.K.
- Frantz D.E.
- Ye J.
- Ma S.
- Chu W.-D.
- Zhang Y.
- Wang J.
- Wang Y.
- Zhang W.
- Ma S.
- Wang M.
- Liu Z.-L.
- Zhang X.
- Tian P.-P.
- Xu Y.-H.
- Loh T.-P.
- Tang Y.
- Chen Q.
- Liu X.
- Wang G.
- Lin L.
- Feng X.
- Chu W.-D.
- Zhang L.
- Zhang Z.
- Zhou Q.
- Mo F.
- Zhang Y.
- Wang J.
- Yao Q.
- Liao Y.
- Lin L.
- Lin X.
- Ji J.
- Liu X.
- Feng X.
- Poulsen P.H.
- Li Y.
- Lauridsen V.H.
- Jørgensen D.K.B.
- Palazzo T.A.
- Meazza M.
- Jørgensen K.A.
- Wang Y.
- Zhang W.
- Ma S.
- Wang M.
- Liu Z.-L.
- Zhang X.
- Tian P.-P.
- Xu Y.-H.
- Loh T.-P.
- Tang Y.
- Chen Q.
- Liu X.
- Wang G.
- Lin L.
- Feng X.
- Chu W.-D.
- Zhang L.
- Zhang Z.
- Zhou Q.
- Mo F.
- Zhang Y.
- Wang J.
- Yao Q.
- Liao Y.
- Lin L.
- Lin X.
- Ji J.
- Liu X.
- Feng X.
- Poulsen P.H.
- Li Y.
- Lauridsen V.H.
- Jørgensen D.K.B.
- Palazzo T.A.
- Meazza M.
- Jørgensen K.A.
- Mbofana C.T.
- Miller S.J.
- Tap A.
- Blond A.
- Wakchaure V.N.
- List B.
- Tang Y.
- Xu J.
- Yang J.
- Lin L.
- Feng X.
- Liu X.
- Zheng W.-F.
- Zhang W.
- Huang C.
- Wu P.
- Qian H.
- Wang L.
- Guo Y.-L.
- Ma S.
- Hu Y.
- Shi W.
- Zheng B.
- Liao J.
- Wang W.
- Wu Y.
- Guo H.
- Li X.
- Sun J.
- Wang J.
- Zheng S.
- Rajkumar S.
- Xie J.
- Yu N.
- Peng Q.
- Yang X.
- Wang Z.
- Lin X.
- Chen X.
- Li P.
- Li W.
- Mbofana C.T.
- Miller S.J.
- Tap A.
- Blond A.
- Wakchaure V.N.
- List B.
- Tang Y.
- Xu J.
- Yang J.
- Lin L.
- Feng X.
- Liu X.
- Zheng W.-F.
- Zhang W.
- Huang C.
- Wu P.
- Qian H.
- Wang L.
- Guo Y.-L.
- Ma S.
- Hu Y.
- Shi W.
- Zheng B.
- Liao J.
- Wang W.
- Wu Y.
- Guo H.
- Li X.
- Sun J.
- Wang J.
- Zheng S.
- Rajkumar S.
- Xie J.
- Yu N.
- Peng Q.
- Yang X.
- Wang Z.
- Lin X.
- Chen X.
- Li P.
- Li W.
- Qian D.
- Wu L.
- Lin Z.
- Sun J.
- Chen M.
- Qian D.
- Sun J.
- Zhang L.
- Han Y.
- Huang A.
- Zhang P.
- Li P.
- Li W.
- Zhang P.
- Huang Q.
- Cheng Y.
- Li R.
- Li P.
- Li W.
- Qian D.
- Wu L.
- Lin Z.
- Sun J.
- Chen M.
- Qian D.
- Sun J.
- Zhang L.
- Han Y.
- Huang A.
- Zhang P.
- Li P.
- Li W.
- Zhang P.
- Huang Q.
- Cheng Y.
- Li R.
- Li P.
- Li W.

- Mbofana C.T.
- Miller S.J.
- Tap A.
- Blond A.
- Wakchaure V.N.
- List B.
- Tang Y.
- Xu J.
- Yang J.
- Lin L.
- Feng X.
- Liu X.
- Zheng W.-F.
- Zhang W.
- Huang C.
- Wu P.
- Qian H.
- Wang L.
- Guo Y.-L.
- Ma S.
- Hu Y.
- Shi W.
- Zheng B.
- Liao J.
- Wang W.
- Wu Y.
- Guo H.
- Li X.
- Sun J.
- Wang J.
- Zheng S.
- Rajkumar S.
- Xie J.
- Yu N.
- Peng Q.
- Yang X.
- Wang Z.
- Lin X.
- Chen X.
- Li P.
- Li W.
- Qian D.
- Wu L.
- Lin Z.
- Sun J.
- Chen M.
- Qian D.
- Sun J.
- Zhang L.
- Han Y.
- Huang A.
- Zhang P.
- Li P.
- Li W.
- Zhang P.
- Huang Q.
- Cheng Y.
- Li R.
- Li P.
- Li W.
- Efremova M.M.
- Novikov A.S.
- Kostikov R.R.
- Panikorovsky T.L.
- Ivanov A.V.
- Molchanov A.P.
- Martinez T.
- Alahyen I.
- Lemière G.
- Mouriès-Mansuy V.
- Fensterbank L.
- Efremova M.M.
- Novikov A.S.
- Kostikov R.R.
- Panikorovsky T.L.
- Ivanov A.V.
- Molchanov A.P.
- Martinez T.
- Alahyen I.
- Lemière G.
- Mouriès-Mansuy V.
- Fensterbank L.
- Huang K.
- Sheng G.
- Lu P.
- Wang Y.
- Li G.
- Liu Y.
- Sanz R.
- Gohain M.
- Miguel D.
- Martínez A.
- Rodríguez F.
- Zhu W.-R.
- Su Q.
- Diao H.-J.
- Wang E.-X.
- Wu F.
- Zhao Y.-L.
- Weng J.
- Lu G.
- Huang W.
- Shen Q.
- Wang J.
- Zhou X.
- Xia Y.
- Wade N.W.
- Palermo P.N.
- Wang Y.
- Wang Y.-M.
- Jana S.
- Dey A.
- Singsardar M.
- Bagdi A.K.
- Hajra A.
- Du S.
- Zhou A.-X.
- Yang R.
- Song X.-R.
- Xiao Q.
- Yan W.
- Ye X.
- Weise K.
- Petersen L.J.
- Shi X.
- Huang K.
- Sheng G.
- Lu P.
- Wang Y.
- Li G.
- Liu Y.
- Sanz R.
- Gohain M.
- Miguel D.
- Martínez A.
- Rodríguez F.
- Zhu W.-R.
- Su Q.
- Diao H.-J.
- Wang E.-X.
- Wu F.
- Zhao Y.-L.
- Weng J.
- Lu G.
- Huang W.
- Shen Q.
- Wang J.
- Zhou X.
- Xia Y.
- Wade N.W.
- Palermo P.N.
- Wang Y.
- Wang Y.-M.
- Jana S.
- Dey A.
- Singsardar M.
- Bagdi A.K.
- Hajra A.
- Du S.
- Zhou A.-X.
- Yang R.
- Song X.-R.
- Xiao Q.
- Yan W.
- Ye X.
- Weise K.
- Petersen L.J.
- Shi X.
- Du S.
- Zhou A.-X.
- Yang R.
- Song X.-R.
- Xiao Q.
- Yan W.
- Ye X.
- Weise K.
- Petersen L.J.
- Shi X.
- Li X.
- Sun J.
- Wang J.
- Zheng S.
- Rajkumar S.
- Xie J.
- Yu N.
- Peng Q.
- Yang X.
- Wang Z.
- Lin X.
- Chen X.
- Li P.
- Li W.
- Li G.
- Liu Y.
- Sanz R.
- Gohain M.
- Miguel D.
- Martínez A.
- Rodríguez F.
- Zhu W.-R.
- Su Q.
- Diao H.-J.
- Wang E.-X.
- Wu F.
- Zhao Y.-L.
- Weng J.
- Lu G.
- Huang W.
- Shen Q.
- Wang J.
- Zhou X.
- Xia Y.
- Wade N.W.
- Palermo P.N.
- Wang Y.
- Wang Y.-M.
- Houk K.N.
- List B.
- MacMillan D.W.C.
- Wang T.
- Han X.
- Zhong F.
- Yao W.
- Lu Y.
- Zong L.
- Tan C.-H.
- Wang Y.-B.
- Tan B.
- Metrano A.J.
- Miller S.J.
- Tu M.
- Chen K.
- Wu P.
- Zhang Y.-C.
- Liu X.-Q.
- Shi F.
- Houk K.N.
- List B.
- MacMillan D.W.C.
- Wang T.
- Han X.
- Zhong F.
- Yao W.
- Lu Y.
- Zong L.
- Tan C.-H.
- Wang Y.-B.
- Tan B.
- Metrano A.J.
- Miller S.J.
- Tu M.
- Chen K.
- Wu P.
- Zhang Y.-C.
- Liu X.-Q.
- Shi F.
- Pan X.
- Wang Z.
- Kan L.
- Mao Y.
- Zhu Y.
- Liu L.
- Pan H.-P.
- Zhu Z.-Q.
- Qiu Z.-W.
- Liu H.-F.
- Ma J.-D.
- Li B.Q.
- Feng N.
- Ma A.-J.
- Peng J.-B.
- Zhang X.-Z.
- Wang J.-R.
- Jiang X.-L.
- Hang Q.-Q.
- Zhang S.
- Mei G.-J.
- Shi F.
- Wang Z.
- Zhu Y.
- Pan X.
- Wang G.
- Liu L.
- Pan X.
- Wang Z.
- Kan L.
- Mao Y.
- Zhu Y.
- Liu L.
- Pan H.-P.
- Zhu Z.-Q.
- Qiu Z.-W.
- Liu H.-F.
- Ma J.-D.
- Li B.Q.
- Feng N.
- Ma A.-J.
- Peng J.-B.
- Zhang X.-Z.
- Wang J.-R.
- Jiang X.-L.
- Hang Q.-Q.
- Zhang S.
- Mei G.-J.
- Shi F.
- Wang Z.
- Zhu Y.
- Pan X.
- Wang G.
- Liu L.
- Zhang L.
- Han Y.
- Huang A.
- Zhang P.
- Li P.
- Li W.
- Zhang P.
- Huang Q.
- Cheng Y.
- Li R.
- Li P.
- Li W.
- Qian D.
- Wu L.
- Lin Z.
- Sun J.
- Chen M.
- Qian D.
- Sun J.
- Zhang L.
- Han Y.
- Huang A.
- Zhang P.
- Li P.
- Li W.
- Zhang P.
- Huang Q.
- Cheng Y.
- Li R.
- Li P.
- Li W.
- Qian D.
- Wu L.
- Lin Z.
- Sun J.
- Chen M.
- Qian D.
- Sun J.
- Zhang L.
- Han Y.
- Huang A.
- Zhang P.
- Li P.
- Li W.
- Zhang P.
- Huang Q.
- Cheng Y.
- Li R.
- Li P.
- Li W.
- Kwon Y.
- Chinn A.J.
- Kim B.
- Miller S.J.
- Ma C.
- Jiang F.
- Sheng F.-T.
- Jiao Y.
- Mei G.-J.
- Shi F.
- Jiang F.
- Chen K.-W.
- Wu P.
- Zhang Y.-C.
- Jiao Y.
- Shi F.
- Ma C.
- Sheng F.-T.
- Wang H.-Q.
- Deng S.
- Zhang Y.-C.
- Jiao Y.-C.
- Tan W.
- Shi F.
- Sheng F.-T.
- Li Z.-M.
- Zhang Y.-Z.
- Sun L.-X.
- Zhang Y.-C.
- Tan W.
- Shi F.
- Huang S.
- Wen H.
- Tian Y.
- Wang P.
- Qin W.
- Yan H.
- Liu S.-J.
- Chen Z.-H.
- Chen J.-Y.
- Ni S.-F.
- Zhang Y.-C.
- Shi F.
- Kwon Y.
- Chinn A.J.
- Kim B.
- Miller S.J.
- Ma C.
- Jiang F.
- Sheng F.-T.
- Jiao Y.
- Mei G.-J.
- Shi F.
- Jiang F.
- Chen K.-W.
- Wu P.
- Zhang Y.-C.
- Jiao Y.
- Shi F.
- Ma C.
- Sheng F.-T.
- Wang H.-Q.
- Deng S.
- Zhang Y.-C.
- Jiao Y.-C.
- Tan W.
- Shi F.
- Sheng F.-T.
- Li Z.-M.
- Zhang Y.-Z.
- Sun L.-X.
- Zhang Y.-C.
- Tan W.
- Shi F.
- Huang S.
- Wen H.
- Tian Y.
- Wang P.
- Qin W.
- Yan H.
- Liu S.-J.
- Chen Z.-H.
- Chen J.-Y.
- Ni S.-F.
- Zhang Y.-C.
- Shi F.

- Zhang Y.-C.
- Jiang F.
- Shi F.
- Wang C.-S.
- Li T.-Z.
- Liu S.-J.
- Zhang Y.-C.
- Deng S.
- Jiao Y.
- Shi F.
- Li T.-Z.
- Liu S.-J.
- Sun Y.-W.
- Deng S.
- Tan W.
- Jiao Y.
- Zhang Y.-C.
- Shi F.
- Wang J.-Y.
- Sun M.
- Yu X.-Y.
- Zhang Y.-C.
- Tan W.
- Shi F.
- Zhang Y.-C.
- Jiang F.
- Shi F.
- Wang C.-S.
- Li T.-Z.
- Liu S.-J.
- Zhang Y.-C.
- Deng S.
- Jiao Y.
- Shi F.
- Li T.-Z.
- Liu S.-J.
- Sun Y.-W.
- Deng S.
- Tan W.
- Jiao Y.
- Zhang Y.-C.
- Shi F.
- Wang J.-Y.
- Sun M.
- Yu X.-Y.
- Zhang Y.-C.
- Tan W.
- Shi F.
- Zheng C.
- You S.-L.
- Xia Z.-L.
- Xu-Xu Q.-F.
- Zheng C.
- You S.-L.
- An J.
- Bandini M.
- Sheng F.-T.
- Wang J.-Y.
- Tan W.
- Zhang Y.-C.
- Shi F.
- Zheng C.
- You S.-L.
- Wang H.
- Zhang J.
- Tu Y.
- Zhang J.
- Li K.
- Gonçalves T.P.
- Huang K.-W.
- Lu Y.
- Mei G.-J.
- Tang X.
- Tasdan Y.
- Lu Y.
- Wang Y.
- Zhang W.-Y.
- Xie J.-H.
- Yu Z.-L.
- Tian J.-H.
- Zheng C.
- Hou X.-L.
- You S.-L.
- Zhang Y.-Q.
- Chen Y.-B.
- Liu J.-R.
- Wu S.-Q.
- Fan X.-Y.
- Zhang Z.-X.
- Hong X.
- Ye L.-W.
- Austin J.F.
- Kim S.-G.
- Sinz C.J.
- Xiao W.-J.
- MacMillan D.W.C.
- Cai Q.
- Liu C.
- Liang X.-W.
- You S.-L.
- Duan D.-H.
- Yin Q.
- Wang S.-G.
- Gu Q.
- You S.-L.
- Cai Q.
- Liu C.
- Liang X.-W.
- You S.-L.
- Duan D.-H.
- Yin Q.
- Wang S.-G.
- Gu Q.
- You S.-L.
- Xie W.
- Jiang G.
- Liu H.
- Hu J.
- Pan X.
- Zhang H.
- Wan X.
- Lai Y.
- Ma D.
- Cai Q.
- Yin Q.
- You S.-L.
- Liang X.-W.
- Liu C.
- Zhang W.
- You S.-L.
- Egami H.
- Hotta R.
- Otsubo M.
- Rouno T.
- Niwa T.
- Yamashita K.
- Hamashima Y.
- Xie W.
- Jiang G.
- Liu H.
- Hu J.
- Pan X.
- Zhang H.
- Wan X.
- Lai Y.
- Ma D.
- Cai Q.
- Yin Q.
- You S.-L.
- Liang X.-W.
- Liu C.
- Zhang W.
- You S.-L.
- Egami H.
- Hotta R.
- Otsubo M.
- Rouno T.
- Niwa T.
- Yamashita K.
- Hamashima Y.
- Li Q.
- Xia T.
- Yao L.
- Deng H.
- Liao X.
- Gentry E.C.
- Rono L.J.
- Hale M.E.
- Matsuura R.
- Knowles R.R.
- Liang K.
- Tong X.
- Li T.
- Shi B.
- Wang H.
- Yan P.
- Xia C.
- Cheng Y.-Z.
- Zhao Q.-R.
- Zhang X.
- You S.-L.
- Zhang Z.
- Antilla J.C.
- Wei Q.
- Wang Y.-Y.
- Du Y.-L.
- Gong L.-Z.
- Nelson H.M.
- Reisberg S.H.
- Shunatona H.P.
- Patel J.S.
- Toste F.D.
- Li Q.
- Xia T.
- Yao L.
- Deng H.
- Liao X.
- Gentry E.C.
- Rono L.J.
- Hale M.E.
- Matsuura R.
- Knowles R.R.
- Liang K.
- Tong X.
- Li T.
- Shi B.
- Wang H.
- Yan P.
- Xia C.
- Cheng Y.-Z.
- Zhao Q.-R.
- Zhang X.
- You S.-L.
- Zhang Z.
- Antilla J.C.
- Wei Q.
- Wang Y.-Y.
- Du Y.-L.
- Gong L.-Z.
- Nelson H.M.
- Reisberg S.H.
- Shunatona H.P.
- Patel J.S.
- Toste F.D.
- Austin J.F.
- Kim S.-G.
- Sinz C.J.
- Xiao W.-J.
- MacMillan D.W.C.
- Duan D.-H.
- Yin Q.
- Wang S.-G.
- Gu Q.
- You S.-L.
- Cai Q.
- Liu C.
- Liang X.-W.
- You S.-L.
- Duan D.-H.
- Yin Q.
- Wang S.-G.
- Gu Q.
- You S.-L.
- Cai Q.
- Liu C.
- Liang X.-W.
- You S.-L.
- Xie W.
- Jiang G.
- Liu H.
- Hu J.
- Pan X.
- Zhang H.
- Wan X.
- Lai Y.
- Ma D.
- Cai Q.
- Yin Q.
- You S.-L.
- Liang X.-W.
- Liu C.
- Zhang W.
- You S.-L.
- Egami H.
- Hotta R.
- Otsubo M.
- Rouno T.
- Niwa T.
- Yamashita K.
- Hamashima Y.
- Xie W.
- Jiang G.
- Liu H.
- Hu J.
- Pan X.
- Zhang H.
- Wan X.
- Lai Y.
- Ma D.
- Cai Q.
- Yin Q.
- You S.-L.
- Liang X.-W.
- Liu C.
- Zhang W.
- You S.-L.
- Egami H.
- Hotta R.
- Otsubo M.
- Rouno T.
- Niwa T.
- Yamashita K.
- Hamashima Y.
- Zhang Z.
- Antilla J.C.
- Wei Q.
- Wang Y.-Y.
- Du Y.-L.
- Gong L.-Z.
- Nelson H.M.
- Reisberg S.H.
- Shunatona H.P.
- Patel J.S.
- Toste F.D.
- Li Q.
- Xia T.
- Yao L.
- Deng H.
- Liao X.
- Gentry E.C.
- Rono L.J.
- Hale M.E.
- Matsuura R.
- Knowles R.R.
- Liang K.
- Tong X.
- Li T.
- Shi B.
- Wang H.
- Yan P.
- Xia C.
- Cheng Y.-Z.
- Zhao Q.-R.
- Zhang X.
- You S.-L.
- Zhang Z.
- Antilla J.C.
- Wei Q.
- Wang Y.-Y.
- Du Y.-L.
- Gong L.-Z.
- Nelson H.M.
- Reisberg S.H.
- Shunatona H.P.
- Patel J.S.
- Toste F.D.
- Li Q.
- Xia T.
- Yao L.
- Deng H.
- Liao X.
- Gentry E.C.
- Rono L.J.
- Hale M.E.
- Matsuura R.
- Knowles R.R.
- Liang K.
- Tong X.
- Li T.
- Shi B.
- Wang H.
- Yan P.
- Xia C.
- Cheng Y.-Z.
- Zhao Q.-R.
- Zhang X.
- You S.-L.
- Uraguchi D.
- Terada M.
- Akiyama T.
- Itoh J.
- Yokota K.
- Fuchibe K.
- Wu H.
- He Y.-P.
- Shi F.
- Li S.
- Xiang S.-H.
- Tan B.
- Lin X.
- Wang L.
- Han Z.
- Chen Z.
- Da B.-C.
- Xiang S.-H.
- Li S.
- Tan B.
- Akiyama T.
- Terada M.
- Terada M.
- Yu J.
- Shi F.
- Gong L.-Z.
- Parmar D.
- Sugiono E.
- Raja S.
- Rueping M.
- Wu H.
- He Y.-P.
- Shi F.
- Li S.
- Xiang S.-H.
- Tan B.
- Lin X.
- Wang L.
- Han Z.
- Chen Z.
- Da B.-C.
- Xiang S.-H.
- Li S.
- Tan B.
- Akiyama T.
- Terada M.
- Terada M.
- Yu J.
- Shi F.
- Gong L.-Z.
- Parmar D.
- Sugiono E.
- Raja S.
- Rueping M.
- Liu L.
- Zhang J.
- Tan B.
- Jiang M.
- Zhou T.
- Shi B.
- Liu L.
- Zhang J.
- Tan B.
- Jiang M.
- Zhou T.
- Shi B.
- Mao J.-H.
- Wang Y.-B.
- Yang L.
- Xiang S.-H.
- Wu Q.-H.
- Cui Y.
- Lu Q.
- Lv J.
- Li S.
- Tan B.
- Ma D.
- Miao C.-B.
- Sun J.
- Mei G.-J.
- Zheng W.
- Gonçalves T.P.
- Tang X.
- Huang K.-W.
- Lu Y.
- Zhang R.
- Ge S.
- Sun J.
- An Q.-J.
- Xia W.
- Ding W.-Y.
- Liu H.-H.
- Xiang S.-H.
- Wang Y.-B.
- Zhong G.
- Tan B.
- Yang J.
- Zhang J.-W.
- Bao W.
- Qiu S.-Q.
- Li S.
- Xiang S.-H.
- Song J.
- Zhang J.
- Tan B.
- Mao J.-H.
- Wang Y.-B.
- Yang L.
- Xiang S.-H.
- Wu Q.-H.
- Cui Y.
- Lu Q.
- Lv J.
- Li S.
- Tan B.
- Ma D.
- Miao C.-B.
- Sun J.
- Mei G.-J.
- Zheng W.
- Gonçalves T.P.
- Tang X.
- Huang K.-W.
- Lu Y.
- Zhang R.
- Ge S.
- Sun J.
- An Q.-J.
- Xia W.
- Ding W.-Y.
- Liu H.-H.
- Xiang S.-H.
- Wang Y.-B.
- Zhong G.
- Tan B.
- Yang J.
- Zhang J.-W.
- Bao W.
- Qiu S.-Q.
- Li S.
- Xiang S.-H.
- Song J.
- Zhang J.
- Tan B.
2. Results and discussion


- Pan H.-P.
- Zhu Z.-Q.
- Qiu Z.-W.
- Liu H.-F.
- Ma J.-D.
- Li B.Q.
- Feng N.
- Ma A.-J.
- Peng J.-B.
- Zhang X.-Z.





3. Conclusion
Declaration of competing interest
Acknowledgements
Appendix A. Supplementary data
- Multimedia component 1
References
- a)Synthesis and properties of allenic natural products and pharmaceuticals.Angew. Chem. Int. Ed. 2004; 43: 1196-1216https://doi.org/10.1002/anie.200300628
- b)Allenes in asymmetric catalysis: asymmetric ring opening of meso-epoxides catalyzed by allene-containing phosphine oxides.J. Am. Chem. Soc. 2009; 131: 10364-10365https://doi.org/10.1021/ja9041127
- c)Chiral allene-containing phosphines in asymmetric catalysis.J. Am. Chem. Soc. 2011; 133: 18066-18069https://doi.org/10.1021/ja207748r
- d)Allenes in molecular materials.Angew. Chem. Int. Ed. 2012; 51: 2818-2828https://doi.org/10.1002/anie.201108001
- e)Some typical advances in the synthetic applications of allenes.Chem. Rev. 2005; 105: 2829-2872https://doi.org/10.1021/cr020024j
- f)Allenes in catalytic asymmetric synthesis and natural product syntheses.Angew. Chem. Int. Ed. 2012; 51: 3074-3112https://doi.org/10.1002/anie.201101460
- g)Palladium-catalyzed cyclization reactions of allenes in the presence of unsaturated carbon–carbon bonds.Acc. Chem. Res. 2014; 47: 989-1000https://doi.org/10.1021/ar4002069
(For some reviews):
- a)Synthesizing allenes today (1982-2006).Synthesis. 2007; 6: 795-818https://doi.org/10.1055/s-2007-965963
- b)Catalytic enantioselective synthesis of axially chiral allenes.Tetrahedron: Asymmetry. 2009; 20: 259-271https://doi.org/10.1016/j.tetasy.2008.11.039
- c)Recent advances in the catalytic syntheses of allenes: a critical assessment.ACS Catal. 2014; 4: 519-528https://doi.org/10.1021/cs401007m
- d)Conquering three-carbon axial chirality of allenes.Org. Chem. Front. 2014; 1: 1210-1224https://doi.org/10.1039/C4QO00208C
- e)Recent advances in catalytic asymmetric synthesis of allenes.Catal. Sci. Technol. 2017; 7: 4570-4579https://doi.org/10.1039/C7CY01319A
(For some recent examples on enantioselective construction of axially chiral di- or trisubstituted allenes):
- a)A room-temperature catalytic asymmetric synthesis of allenes with ECNU-Phos.J. Am. Chem. Soc. 2013; 135: 11517-11520https://doi.org/10.1021/ja406135t
- b)Synthesis of highly substituted racemic and enantioenriched allenylsilanes via copper-catalyzed hydrosilylation of (Z)-2-alken-4-ynoates with silylboronate.J. Am. Chem. Soc. 2015; 137: 14830-14833https://doi.org/10.1021/jacs.5b08279
- c)Direct synthesis of chiral allenoates from the asymmetric C-H insertion of α-diazoesters into terminal alkynes.Angew. Chem. Int. Ed. 2015; 54: 9512-9516https://doi.org/10.1002/anie.201501918
- d)Enantioselective synthesis of trisubstituted allenes via Cu(I)- catalyzed coupling of diazoalkanes with terminal alkynes.J. Am. Chem. Soc. 2016; 138: 14558-14561https://doi.org/10.1021/jacs.6b09674
- e)Efficient synthesis of chiral trisubstituted 1,2-allenyl ketones by catalytic asymmetric conjugate addition of malonic esters to enynes.Angew. Chem. Int. Ed. 2016; 55: 1859-1863https://doi.org/10.1002/anie.201509455
- f)Organocatalytic formation of chiral trisubstituted allenes and chiral furan derivatives.Angew. Chem. Int. Ed. 2018; 57: 10661-10665https://doi.org/10.1002/anie.201806238
(For some recent examples on enantioselective construction of axially chiral tetrasubstituted allenes):
- a)Diastereo- and enantioselective addition of anilide-functionalized allenoates to N-acylimines catalyzed by a pyridylalanine-based peptide.J. Am. Chem. Soc. 2014; 136: 3285-3292https://doi.org/10.1021/ja412996f
- b)Chiral allenes via alkynylogous mukaiyama aldol reaction.Angew. Chem. Int. Ed. 2016; 55: 8962-8965https://doi.org/10.1002/anie.201603649
- c)Asymmetric three-component reaction for the dynthesis of tetrasubstituted allenoates via allenoate-copper intermediates.Inside Chem. 2018; 4: 1658-1672https://doi.org/10.1016/j.chempr.2018.04.012
- d)Tetrasubstituted allenes via the palladium-catalysed kinetic resolution of propargylic alcohols using a supporting ligand.Nat. Catal. 2019; 2: 997-1005https://doi.org/10.1038/s41929-019-0346-z
- e)Organocatalytic asymmetric C(sp2)−H allylic alkylation: enantioselective synthesis of tetrasubstituted allenoates.Angew. Chem. Int. Ed. 2020; 59: 19820-19824https://doi.org/10.1002/anie.202009460
- f)Organocatalytic enantioselective synthesis of chiral allenes: remote asymmetric 1,8-addition of indole imine methides.Angew. Chem. Int. Ed. 2020; 59: 17049-17054https://doi.org/10.1002/anie.202006137
- g)Chiral phosphoric acid-catalyzed stereodivergent synthesis of trisubstituted allenes and computational mechanistic studies.Nat. Commun. 2020; 11: 5527-5539https://doi.org/10.1038/s41467-020-19294-8
- h)Organocatalytic stereoselective 1,6-addition of thiolacetic acids to alkynyl indole imine methides: access to axially chiral sulfur-containing tetrasubstituted allenes.Org. Chem. Front. 2021; 8: 3469-3474https://doi.org/10.1039/D1QO00394A
- a)Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols.Nat. Commun. 2017; 8: 567-576https://doi.org/10.1038/s41467-017-00251-x
- b)Organocatalytic enantioconvergent synthesis of tetrasubstituted allenes via asymmetric 1,8-addition to aza-para-quinone methides.Org. Lett. 2019; 21: 8127-8131https://doi.org/10.1021/acs.orglett.9b03224
- c)Organocatalytic remote stereocontrolled 1,8-additions of thiazolones to oropargylic aza-p-quinone methides.Org. Lett. 2019; 21: 7415-7419https://doi.org/10.1021/acs.orglett.9b02726
- d)Remote stereocontrolled construction of vicinal axially chiral tetrasubstituted allenes and heteroatom-functionalized quaternary carbon stereocenters.Org. Lett. 2019; 21: 503-507https://doi.org/10.1021/acs.orglett.8b03801
(For some recent examples:)
- a)Regio- and diastereoselectivity of the cycloaddition of nitrones with N-propadienylindole and pyrroles.Tetrahedron. 2018; 74: 174-183https://doi.org/10.1016/j.tet.2017.11.056
- b)Straightforward access to 2-iodoindolizines via iodine-mediated cyclization of 2-pyridylallenes.Org. Process Res. Dev. 2020; 24: 817-821
(For a recent review):
- a)Recent advances in the direct transformation of propargylic alcohols to allenes.Org. Chem. Front. 2021; 8: 6760-6782https://doi.org/10.1039/D1QO01151K. For some representative examples
- b)Synthesis of allene triazole through iron catalyzed regioselective addition to propargyl alcohols.Chem. Commun. 2012; 48: 3521-3523https://doi.org/10.1039/C2CC17522C
- c)From 1-sulfonyl-4-aryl-1,2,3-triazoles to 1-allenyl-5-aryl-1,2,3-triazoles.J. Org. Chem. 2017; 82: 5294-5300https://doi.org/10.1021/acs.joc.7b00627
- d)Gold-catalyzed intramolecular indole/alkyne cyclization cascades through a heterolytic fragmentation: 1,5-indole migration and allenylation.J. Org. Chem. 2010; 75: 3526-3528https://doi.org/10.1021/jo1005125
- e)Synthesis of 3-allenylindoles and 3-dienylindoles by Brønsted acid catalyzed allenylation of 2-arylindoles with tertiary propargylic alcohols.Synlett. 2009; 12 (https://doi.org/10.155/s-0029-12175430): 1985-1989
- (f)Enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols: access to chiral tetrasubstituted allenes and naphthopyrans.Org. Lett. 2020; 22: 6873-6878https://doi.org/10.1021/acs.orglett.0c02386
- (g)One-step synthesis of substituted dihydro- and tetrahydroisoquinolines by FeCl3·6H2O catalyzed intramolecular Friedel-Crafts reaction of benzylamino-substituted propargylic alcohols.J. Org. Chem. 2008; 73: 1586-1589https://doi.org/10.1021/jo702342r
- (h)Contrasteric coupling of allenes and tetrahydroisoquinolines by iron-catalysed allenic C(sp2)–H functionalization.Chem. Commun. 2021; 57: 13329-13332https://doi.org/10.1039/D1CC05949A
- (i)Zn(OTf)2-catalyzed synthesis of imidazole-substituted allenes.J. Org. Chem. 2016; 81: 9489-9493https://doi.org/10.1021/acs.joc.6b01916
(For early reviews:)
- a)Asymmetric organocatalysis.Acc. Chem. Res. 2004; 37: 487https://doi.org/10.1021/ar040216w
- b)The advent and development of organocatalysis.Nature. 2008; 455 (https://doi.org/10.1038/nature07367; For some recent reviews): 304-308
- c)Amino acid-derived bifunctional phosphines for enantioselective transformations.Acc. Chem. Res. 2016; 49: 1369-1378https://doi.org/10.1021/acs.accounts.6b00163
- d)Phase-transfer and ion-pairing catalysis of pentanidiums and bisguanidiniums.Acc. Chem. Res. 2017; 50: 842-856https://doi.org/10.1021/acs.accounts.6b00604
- e)Construction of axially chiral compounds via asymmetric organocatalysis.Acc. Chem. Res. 2018; 51: 534-547https://doi.org/10.1021/acs.accounts.7b00602
- f)Peptide-based catalysts eeach the outer sphere through remote desymmetrization and atroposelectivity.Acc. Chem. Res. 2019; 52: 199-215https://doi.org/10.1021/acs.accounts.8b00473
- g)Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives.Org. Chem. Front. 2021; 8: 2643-2672https://doi.org/10.1039/D0QO01643H
(For some recent examples on nucleophilic addition of indole derivatives to p-QMs)
- a)Catalytic asymmetric conjugate addition of indoles to para-quinone methide derivatives.J. Org. Chem. 2019; 84: 7829-7839https://doi.org/10.1021/acs.joc.9b00710
- b)Synthesis of chiral triarylmethanes bearing all-carbon quaternary stereocenters: catalytic asymmetric oxidative cross-coupling of 2,2-diarylacetonitriles and (hetero)arenes.Angew. Chem. Int. Ed. 2020; 59: 3053-3057https://doi.org/10.1002/anie.201912739
- c)Cross-dehydrogenative coupling enables enantioselective access to CF3-substituted allcarbon quaternary stereocenters.Chem. Sci. 2020; 11: 2414-2419https://doi.org/10.1039/C9SC05894J
- d)Dearomatization of 2,3-disubstituted indoles via 1,8-addition of propargylic (aza)-para-quinone methides.J. Org. Chem. 2021; 86: 16518-16534https://doi.org/10.1021/acs.joc.1c01857
(For some recent examples)
- a)Divergent control of point and axial stereogenicity: catalytic enantioselective C−N bond-forming cross-coupling and catalyst-controlled atroposelective cyclodehydration.Angew. Chem. Int. Ed. 2018; 57: 6251-6255https://doi.org/10.1002/anie.201802963
- b)Design and catalytic asymmetric construction of axially chiral 3,3’-bisindole skeletons.Angew. Chem. Int. Ed. 2019; 58: 3014-3020https://doi.org/10.1002/anie.201811177
- c)A strategy for synthesizing axially chiral naphthyl-indoles: catalytic asymmetric addition reactions of racemic substrates.Angew. Chem. Int. Ed. 2019; 58: 15104-15110https://doi.org/10.1002/anie.201908279
- d)Atroposelective access to oxindole-based axially chiral styrenes via the strategy of catalytic kinetic resolution.J. Am. Chem. Soc. 2020; 142: 15686-15696https://doi.org/10.1021/jacs.0c00208
- e)Atroposelective synthesis of 3,3’-bisindoles bearing axial and central chirality: using isatin-derived imines as electrophiles.Chin. J. Chem. 2020; 38: 583-589https://doi.org/10.1002/cjoc.202000022
- f)Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements.Angew. Chem. Int. Ed. 2021; 60: 21486-21493https://doi.org/10.1002/anie.202108040
- g)Rational design of axially chiral styrene-based organocatalysts and their application in catalytic asymmetric (2+4) cyclizations.Angew. Chem. Int. Ed. 2021; https://doi.org/10.1002/anie.202112226
(For a summary:)
- a)Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach.Acc. Chem. Res. 2020; 53: 425-446https://doi.org/10.1021/acs.accounts.9b00549. For some recent representative examples
- b)Axially chiral aryl-alkene-indole framework: a nascent member of the atropisomeric family and its catalytic asymmetric construction.Chin. J. Chem. 2020; 38: 543-552https://doi.org/10.1002/cjoc.202000131
- c)Regio- and enantioselective (3+3) cycloaddition of nitrones with 2-indolylmethanols enabled by cooperative organocatalysis.Angew. Chem. Int. Ed. 2021; 60: 2355-2363https://doi.org/10.1002/anie.202011267
- d)Atroposelective construction of axially chiral alkene-indole scaffolds via catalytic enantioselective addition reaction of 3-alkynyl-2-indolylmethanols.Chin. J. Chem. 2021; 39: 2163-2171https://doi.org/10.1002/cjoc.202100214
(For a book:)
- a)Asymmetric dearomatization reactions.Wiley-VCH, Weinheim2016 (For some recent reviews:)
- b)Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products.Nat. Prod. Rep. 2019; 36: 1589-1605https://doi.org/10.1039/C8NP00098K
- c)Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions.Chem. Soc. Rev. 2020; 49: 286-300https://doi.org/10.1039/C8CS00436F
- d)Recent advances in the catalytic dearomatization of naphthols.Eur. J. Org Chem. 2020; 2020: 4087-4097https://doi.org/10.1002/ejoc.202000107
- e)Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives.Org. Chem. Front. 2020; 7: 3967-3998https://doi.org/10.1039/D0QO01124J
- f)Advances in catalytic asymmetric dearomatization.ACS Cent. Sci. 2021; 7: 432-444https://doi.org/10.1021/acscentsci.0c01651
(For some recent examples:)
- a)Phosphine-catalyzed enantioselective dearomative [3 + 2]-cycloaddition of 3-nitroindoles and 2-nitrobenzofurans.Angew. Chem. Int. Ed. 2019; 58: 5422-5426https://doi.org/10.1002/anie.201900036
- b)Dearomatization of 3-nitroindoles via a phosphine-catalyzed enantioselective [3 + 2] annulation reaction.Angew. Chem. Int. Ed. 2019; 58: 5427-5431https://doi.org/10.1002/anie.201900248
- c)Enantioselective dearomatization of indoles via an azoalkene enabled [3 + 2] reaction: facile access to pyrroloindolines.Angew. Chem. Int. Ed. 2020; 59: 648-652https://doi.org/10.1002/anie.201911686
- d)Enantioselective desymmetrization of bisphenol derivatives via Ir-catalyzed allylic dearomatization.J. Am. Chem. Soc. 2020; 142: 19354-19359https://doi.org/10.1021/jacs.0c09638
- e)Asymmetric dearomatization catalysed by chiral Brønsted acids via activation of ynamides.Nat. Chem. 2021; 13: 1093-1100https://doi.org/10.1038/s41557-021-00778-z
- Enantioselective organocatalytic construction of pyrroloindolines by a cascade addition–cyclization strategy: synthesis of (–)-flustramine B.Proc. Natl. Acad. Sci. U. S. A. 2004; 101 (For examples using α,β-unsaturated aldehydes as electrophiles:): 5482-5487https://doi.org/10.1073/pnas.0308177101
(For examples using vinyl ketones as electrophiles):
- (a)Enantioselective construction of pyrroloindolines via chiral phosphoric acid catalyzed cascade michael addition–cyclization of tryptamines.Org. Lett. 2012; 14: 4588-4590https://doi.org/10.1021/ol302043s
- b)Chiral phosphoric acid-catalyzed asymmetric cascade reaction of C(3) substituted indoles and methyl vinyl ketone.Acta Chim. Sin. 2014; 72: 1001-1004https://doi.org/10.6023/A14060497
(For examples using halogen precursors as electrophiles):
- a)Highly enantioselective bromocyclization of tryptamines and its application in the synthesis of (−)-Chimonanthine.Angew. Chem. Int. Ed. 2013; 52: 12924-12927https://doi.org/10.1002/anie.201306774
- b)Chiral-amine-catalyzed asymmetric bromocyclization of tryptamine derivatives.Asian J. Org. Chem. 2014; 3: 408-411https://doi.org/10.1002/ajoc.201300146
- c)Asymmetric fluorinative dearomatization of tryptamine derivatives.Chem. Commun. 2017; 53: 5531-5534https://doi.org/10.1039/C7CC02419C
- d)Asymmetric dearomatizing fluoroamidation of indole derivatives with dianionic phase-transfer catalyst.Org. Lett. 2020; 22: 5656-5660https://doi.org/10.1021/acs.orglett.0c02026
(For examples using other electrophiles)
- a)Enantioselective construction of pyrroloindolines catalyzed by chiral phosphoric acids: total synthesis of (−)-DebromoflustramineB.Angew. Chem. Int. Ed. 2012; 51 (https ://doi.org/10.1002/anie.201203553): 11778-11782
- b)Organocatalytic asymmetric selenofunctionalization of tryptamine for the synthesis of hexahydropyrrolo[2,3-b]indole derivatives.Beilstein J. Org. Chem. 2013; 9: 1559-1564https://doi.org/10.3762/bjoc.9.177
- c)Chiral anion phase transfer of aryldiazonium cations: an enantioselective synthesis of C3-diazenated pyrroloindolines.Angew. Chem. Int. Ed. 2014; 53: 5600-5603https://doi.org/10.1002/anie.201310905
- d)Enantioselective and diastereoselective azo-coupling/iminium-cyclizations: a unified strategy for the total syntheses of (−)-psychotriasine and (+)-pestalazine B.Chem. Sci. 2015; 6: 3599-3605https://doi.org/10.1039/C5SC00338E
- e)Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products.J. Am. Chem. Soc. 2018; 140: 3394-3402https://doi.org/10.1021/jacs.7b13616
- f)Enantioselective radical cyclization of tryptamines by visible light-excited nitroxides.J. Org. Chem. 2018; 83: 10948-10958https://doi.org/10.1021/acs.joc.8b01597
- g)Asymmetric dearomatization of indole derivatives with N-hydroxycarbamates enabled by photoredox catalysis.Angew. Chem. Int. Ed. 2019; 58: 18069-18074https://doi.org/10.1002/anie.201911144
(For early examples)
- a)Enantioselective mannich-type reaction catalyzed by a chiral Brønsted acid.Angew. Chem. Int. Ed. 2004; 43: 1566-1568https://doi.org/10.1002/anie.200353240
- b)Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation.J. Am. Chem. Soc. 2004; 126: 5356-5357https://doi.org/10.1021/ja0491533
(For some reviews):
- a)Stronger brønsted acids.Chem. Rev. 2007; 107: 5744-5758https://doi.org/10.1021/cr068374j
- b)Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions.Chem. Commun. 2008; 35: 4097-4112https://doi.org/10.1039/B807577H
- c)Chiral phosphoric acids as versatile catalysts for enantioselective transformations.Synthesis. 2010; 2010 (https://doi.org/10.1055/s-0029-1218801): 1929-1982
- d)Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.Acc. Chem. Res. 2011; 44: 1156-1171https://doi.org/10.1021/ar2000343
- e)Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates.Chem. Rev. 2014; 114: 9047-9153https://doi.org/10.1021/cr5001496
- f)Recent advances in chiral phosphoric acid catalyzed asymmetric reactions for the synthesis of enantiopure indole derivatives.Synthesis. 2015; 47: 1990-2016https://doi.org/10.1055/s-0034-1378837
- g)Chiral phosphoric acid creates promising opportunities for enantioselective photoredox catalysis.Chin. J. Chem. 2020; 38: 213-214https://doi.org/10.1002/cjoc.201900472
- h)Chiral spirocyclic phosphoric acids and their growing applications.Chin. J. Chem. 2021; 39: 802-824https://doi.org/10.1002/cjoc.202000446
- i)Chiral phosphoric acid catalyzed asymmetric synthesis of axially chiral compounds.Chin. J. Chem. 2021; 39: 1787-1796https://doi.org/10.1002/cjoc.202000751
(For highlights:)
- (a)Catalytic asymmetric [4 + 3] cyclizations of 2-indolylmethanols with ortho-quinone methides.Chin. J. Org. Chem. 2019; 39 (https://doi.org/10.6023/cjoc201900004): 3308-3309
- (b)Design and catalytic asymmetric construction of axially chiral aryl-alkene-indole frameworks.Chin. J. Org. Chem. 2020; 40 (https://doi.org/10.6023/cjoc202000027): 1404-1405
- (c)Construction of a new class of oxindole-based axially chiral styrenes via kinetic resolution.Chin. J. Org. Chem. 2020; 40 (https://doi.org/10.6023/cjoc202000083): 4364-4366
(For some recent examples)
- a)Catalytic enantioselective house–meinwald rearrangement: efficient construction of all-carbon quaternary stereocenters.J. Am. Chem. Soc. 2019; 141: 13783-13787
- b)Catalytic asymmetric formal [3 + 2] cycloaddition of azoalkenes with 3-vinylindoles: synthesis of 2,3-dihydropyrroles.iScience. 2020; 23: 100873-110088https://doi.org/10.1016/j.isci.2020.100873
- c)SPHENOL, a new chiral framework for asymmetric synthesis.J. Am. Chem. Soc. 2021; 143: 12445-12449https://doi.org/10.1021/jacs.1c05709
- d)Nitrosobenzene-enabled chiral phosphoric acid catalyzed enantioselective construction of atropisomeric N-arylbenzimidazoles.Angew. Chem. Int. Ed. 2021; 60: 24888-24893https://doi.org/10.1002/anie.202111251
- e)Chiral phosphoric acid-catalyzed remote control of axial chirality at boron–carbon bond.J. Am. Chem. Soc. 2021; 143: 12924-12929https://doi.org/10.1021/jacs.1c05079
- f)Organocatalyst-controlled site-selective arene C–H functionalization.Nat. Chem. 2021; 13: 982-991https://doi.org/10.1038/s41557-021-00750-x
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy