Advertisement

Iodobenzene-catalyzed photochemical heteroarylation of alcohols by rupture of inert C–H and C–C bonds

  • Zhu Cao
    Affiliations
    Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
    Search for articles by this author
  • Xinxin Wang
    Affiliations
    Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
    Search for articles by this author
  • Xinxin Wu
    Affiliations
    Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
    Search for articles by this author
  • Chen Zhu
    Correspondence
    Corresponding author. Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China.
    Affiliations
    Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China

    Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
    Search for articles by this author
Open AccessPublished:October 19, 2022DOI:https://doi.org/10.1016/j.tchem.2022.100031

      Abstract

      A Minisci-type reaction catalyzed by iodobenzene is disclosed here for the first time. The heteroarylation of unprotected aliphatic alcohols proceeds via alkoxy radical-induced homolytic cleavage of C–H and C–C bonds under photochemical conditions. The use of m-CPBA as the oxidant allows the oxidation of iodobenzene to a hypervalent iodine species, driving the catalytic cycle. The method features mild reaction conditions, broad scope of heteroarenes and alcohols, and scaled up preparations. This approach provides a notable supplement to iodobenzene-catalyzed ionic reactions, and opens up a new avenue for its application in radical chemistry.

      Graphical abstract

      Image 1
      Graphical Abstract

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Tetrahedron Chem
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yoshimura A.
        • Zhdankin V.V.
        Advances in synthetic applications of hypervalent iodine compounds.
        Chem. Rev. 2016; 116: 3328-3435
        • Zhang B.
        • Li X.
        • Guo B.
        • Du Y.
        Hypervalent iodine reagent-mediated reactions involving rearrangement processes.
        Chem. Commun. 2020; 56: 14119-14136
        • Rani N.
        • Soni R.
        • Sihag M.
        • Kinger M.
        • Aneja D.K.
        Combined approach of hypervalentiodine reagents and transition metals in organic reactions.
        Adv. Synth. Catal. 2022; 364: 1798-1848
        • Dahiya A.
        • Sahoo A.K.
        • Chakraborty N.
        • Das B.
        • Patel B.K.
        Updates on hypervalent-iodine reagents: metal-free functionalisation of alkenes, alkynes and heterocycles.
        Org. Biomol. Chem. 2022; 20: 2005-2027
        • Allouche E.M.D.
        • Grinhagena E.
        • Waser J.
        Hypervalent iodine-mediated late-stage peptide and protein functionalization.
        Angew. Chem. Int. Ed. 2022; 61e202112287
        • Kumar R.
        • Singh F.V.
        • Takenaga N.
        • Dohi T.
        Asymmetric direct/stepwise dearomatization reactions involving hypervalent iodine reagents.
        Chem. Asian J. 2022; 17e202101115
        • Dasgupta A.
        • Thiehoff C.
        • Newman P.D.
        • Wirth T.
        • Melen R.L.
        Reactions promoted by hypervalent iodine reagents and boron Lewis acids.
        Org. Biomol. Chem. 2021; 19: 4852-4865
        • Zhao R.
        • Shi L.
        Reactions between diazo compounds and hypervalentIodine(III) reagents.
        Angew. Chem. Int. Ed. 2020; 59: 12282-12292
        • Han Z.-Z.
        • Zhang C.-P.
        Fluorination and fluoroalkylation reactions mediated by hypervalent iodine reagents.
        Adv. Synth. Catal. 2020; 362: 4256-4292
        • Wang X.
        • Studer A.
        Iodine(III) reagents in radical chemistry.
        Acc. Chem. Res. 2017; 50: 1712-1724
        • Wu X.
        • Zhang H.
        • Tang N.
        • Wu Z.
        • Wang D.
        • Ji M.
        • Xu Y.
        • Wang M.
        • Zhu C.
        Metal-free alcohol-directed regioselective heteroarylation of remote unactivated C(sp3)-H bonds.
        Nat. Commun. 2018; 9: 3343
        • Ren R.
        • Zhao H.
        • Huan L.
        • Zhu C.
        Manganese-catalyzed oxidative azidation of cyclobutanols: regiospecific synthesis of alkyl azides by C-C bond cleavage.
        Angew. Chem. Int. Ed. 2015; 54: 12692-12696
        • Huan L.
        • Zhu C.
        Manganese-catalyzed ring-opening chlorination of cyclobutanols: regiospecific synthesis of γ-chloroketones.
        Org. Chem. Front. 2016; 3: 1467-1471
        • Wu Z.
        • Wang D.
        • Liu Y.
        • Huan L.
        • Zhu C.
        Chemo- and regioselective distal heteroaryl ipso-migration: a general protocol for heteroarylation of unactivated alkenes.
        J. Am. Chem. Soc. 2017; 139: 1388-1391
        • Wang M.
        • Wu Z.
        • Zhang B.
        • Zhu C.
        Azidoheteroarylation of unactivated olefins through distal heteroaryl migration.
        Org. Chem. Front. 2018; 5: 1896-1899
        • Wang D.
        • Mao J.
        • Zhu C.
        Visible light-promoted ring-opening functionalization of unstrained cycloalkanols via inert C-C bond scission.
        Chem. Sci. 2018; 9: 5805-5809
        • Tang N.
        • Wu X.
        • Zhu C.
        Practical, Metal-free remote heteroarylation of amides via unactivated C(sp3)-H bond functionalization.
        Chem. Sci. 2019; 10: 6915-6919
        • Shao X.
        • Wu X.
        • Wu S.
        • Zhu C.
        Metal-free radical-mediated C(sp3)-H heteroarylation of alkanes.
        Org. Lett. 2020; 22: 7450-7454
        • Cao Z.
        • Zhang H.
        • Wu X.
        • Li Y.
        • Zhu C.
        Radical heteroarylation of unactivated remote C(sp3)-H bonds via intramolecular heteroaryl migration.
        Org. Chem. Front. 2021; 8: 6395-6399
        • Chang C.
        • Zhang H.
        • Wu X.
        • Zhu C.
        Radical trifunctionalization of hexenenitrile via remote cyano migration.
        Chem. Commun. 2022; 58: 58 1005-1008
        • Wang X.
        • Shao X.
        • Cao Z.
        • Wu X.
        • Zhu C.
        Metal-free photoinduced deformylative Minisci-type reaction.
        Adv. Synth. Catal. 2022; 364: 1200-1204
        • Cao Z.
        • Ji M.
        • Wang X.
        • Wu X.
        • Li Y.
        • Zhu C.
        Metal-free photo-induced heteroarylations of C-H and C-C bonds of alcohols by flow chemistry.
        Green Chem. 2022; 24: 4498-4503
        • Zhu C.
        • Liang Y.
        • Hong X.
        • Sun H.
        • Sun W.-Y.
        • Houk K.N.
        • Shi Z.
        Iodoarene-catalyzed stereospecific intramolecular sp3 C-H amination: reaction development and mechanistic insights.
        J. Am. Chem. Soc. 2015; 137: 7564-7567
        • Ito M.
        • Kubo H.
        • Itani I.
        • Morimoto K.
        • Dohi T.
        • Kita Y.
        Organocatalytic C-H/C-H’ cross-biaryl coupling: C-selective arylation of sulfonanilides with aromatic hydrocarbons.
        J. Am. Chem. Soc. 2013; 135: 14078-14081
        • Dohi T.
        • Maruyama A.
        • Yoshimura M.
        • Morimoto K.
        • Tohma H.
        • Kita Y.
        Versatile hypervalent-iodine(iii)-catalyzed oxidations with m-chloroperbenzoic acid as a cooxidant.
        Angew. Chem. Int. Ed. 2005; 44: 6193-6196
        • Ochiai M.
        • Takeuchi Y.
        • Katayama T.
        • Sueda T.
        • Miyamoto K.
        Iodobenzene-catalyzed α-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using m-chloroperbenzoic acid.
        J. Am. Chem. Soc. 2005; 127: 12244-12245
        • Yamamoto Y.
        • Kawano Y.
        • Toy P.H.
        • Togo H.
        PhI- and polymer-supported PhI-catalyzed oxidative conversion of ketones and alcohols to α-tosyloxyketones with m-chloroperbenzoic acid and p-toluenesulfonic acid.
        Tetrahedron. 2007; 63: 4680-4687
        • Suzuki S.
        • Kamo T.
        • Fukushi K.
        • Hiramatsu T.
        • Tokunaga E.
        • Dohi T.
        • Kita Y.
        • Shibata N.
        Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HF.pyridine/mCPBA system.
        Chem. Sci. 2014; 5: 2754-2760
        • Miyamoto K.
        • Sakai Y.
        • Goda S.
        • Ochiai M.
        A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant.
        Chem. Commun. 2012; 48: 982-984
        • Stodulski M.
        • Goetzinger A.
        • Kohlhepp S.V.
        • Gulder T.
        Halocarbocyclization versus dihalogenation: substituent directed iodine(III) catalyzed halogenations.
        Chem. Commun. 2014; 50: 3435-3438
        • Miyamoto K.
        • Sei Y.
        • Yamaguchi K.
        • Ochiai M.
        Iodomesitylene-catalyzed oxidative cleavage of carbon-carbon double and triple bonds using m-chloroperbenzoic acid as a terminal oxidant.
        J. Am. Chem. Soc. 2009; 131: 1382-1383
        • Page P.C.B.
        • Appleby L.F.
        • Buckley B.R.
        • Allin S.M.
        • McKenzie M.J.
        In situ generation of 2-iodoxybenzoic acid (IBX) in the presence of tetraphenylphosphonium monoperoxysulfate (TPPP) for the conversion of primary alcohols into the corresponding aldehydes.
        Synlett. 2007; 10: 1565-1568
        • Thottumkara A.P.
        • Bowsher M.S.
        • Vinod T.K.
        In situ generation of o-iodoxybenzoic acid (IBX) and the catalytic use of it in oxidation reactions in the presence of oxone as a Co-oxidant.
        Org. Lett. 2005; 7: 2933-2936
        • Narobe R.
        • Murugesan K.
        • Schmid S.
        • König B.
        Decarboxylative Ritter-type amination by cooperative iodine (I/III)-boron Lewis acid catalysis.
        ACS Catal. 2022; 12: 809-817
        • Narobe R.
        • Murugesan K.
        • Haag C.
        • Schirmer T.E.
        • König B.
        C(sp3)-H Ritter amination by excitation of in situ generated iodine (lll)-BF3 complexes.
        Chem. Commun. 2022; https://doi.org/10.1039/D2CC03283J
        • Shen C.
        • Yang M.
        • Xu J.
        • Chen C.
        • Zheng K.
        • Shen J.
        • Zhang P.
        Iodobenzene-catalyzed synthesis of aryl sulfonate esters from aminoquinolines via remote radical C-O cross-coupling.
        RSC Adv. 2017; 7: 49436-49439
        • Jin J.
        • Tong J.
        • Yu W.
        • Qiao J.
        • Shen C.
        Iodobenzene-catalyzed oxidative C-H d3-alkoxylation of quinoxalinones with deuterated alcohols.
        Catal. Commun. 2020; 141106008
        • Peerzada M.N.
        • Hamel E.
        • Bai R.
        • Supuran C.T.
        • Azam A.
        Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development.
        Pharmacol. Ther. 2021; 225107860
        • Stępień M.
        • Gońka E.
        • Żyła M.
        • Sprutta N.
        Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: synthetic routes, properties, and applications.
        Chem. Rev. 2017; 117: 3479-3716
        • Waldman A.J.
        • Ng T.L.
        • Wang P.
        • Balskus E.P.
        Heteroatom-heteroatom bond formation in natural product biosynthesis.
        Chem. Rev. 2017; 117: 5784-5863
        • McGrath N.A.
        • Brichacek M.
        • Njardarson J.T.
        A graphical journey of innovative organic architectures that have improved our lives.
        J. Chem. Educ. 2010; 87: 1348-1349
        • Ward R.A.
        • Kettle J.G.
        Systematic enumeration of heteroaromatic ring systems as reagents for use in medicinal chemistry.
        J. Med. Chem. 2011; 54: 4670-4677
        • Proctor R.S.J.
        • Phipps R.J.
        Recent advancesin Minisci-type reactions.
        Angew. Chem. Int. Ed. 2019; 58: 13666-13699
        • Dong J.
        • Liu Y.
        • Wang Q.
        Recent advances in visible-light-mediated Minisci reactions.
        Chin. J. Org. Chem. 2021; 41: 3771-3791
        • Meng W.
        • Xu K.
        • Guo B.
        • Zeng C.
        Recent advances in Minisci reactions under electrochemical conditions.
        Chin. J. Org. Chem. 2021; 41: 2621-2635
        • Wang W.
        • Wang S.
        Recent advances in Minisci-type reactions and applications in organic synthesis.
        Curr. Org. Chem. 2021; 25: 894-934
        • Li G.-X.
        • Morales-Rivera C.A.
        • Wang Y.
        • Gao F.
        • He G.
        • Liu P.
        • Chen G.
        Photoredox-mediated Minisci C-H alkylation of N-heteroarenes using boronic acids and hypervalent iodine.
        Chem. Sci. 2016; 7: 6407-6412
        • Fu M.-C.
        • Shang R.
        • Zhao B.
        • Wang B.
        • Fu Y.
        Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide.
        Science. 2019; 363: 1429-1434
        • Cheng W.-M.
        • Shang R.
        • Fu M.-C.
        • Fu Y.
        Photoredox-catalysed decarboxylative alkylation of N-heteroarenes with N-(Acyloxy)phthalimides.
        Chem. Eur J. 2017; 23: 2537-2541
        • Li G.-X.
        • Hu X.
        • He G.
        • Chen G.
        Photoredox-mediated Minisci-type alkylation of N-heteroarenes with alkanes with high methylene selectivity.
        ACS Catal. 2018; 8: 11847-11853
        • Hu X.
        • Li G.-X.
        • He G.
        • Chen G.
        Minisci C-H alkylation of N-heteroarenes with aliphatic alcohols via β-scission of alkoxy radical intermediates.
        Org. Chem. Front. 2019; 6: 3205-3209