Advertisement

Total synthesis of antiviral drug, nirmatrelvir (PF-07321332)

  • Chandra Shekhar
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Rajesh Nasam
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Siva Ramakrishna Paipuri
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Prakash Kumar
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Kiranmai Nayani
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Srihari Pabbaraja
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Prathama S. Mainkar
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
  • Srivari Chandrasekhar
    Correspondence
    Corresponding author. Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
    Affiliations
    Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India

    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
    Search for articles by this author
Open AccessPublished:October 18, 2022DOI:https://doi.org/10.1016/j.tchem.2022.100033

      Abstract

      The emergence and rapid spread of coronavirus disease 2019 (COVID-19), a potentially fatal disease, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has swiftly led to public health crisis worldwide. Hence vaccines and antiviral therapeutics are an important part of the healthcare response to combat the ongoing threat by COVID-19. Here, we report an efficient synthesis of nirmatrelvir (PF-07321332), an orally active SARS-CoV-2 main protease inhibitor.

      Graphical abstract

      Image 1
      Graphical Abstract

      Keywords

      Abbreviations:

      SARS-CoV (severe acute respiratory syndrome coronavirus), SAR (structure activity relationship), FDA (Food and Drug Administration), MsCl (methanesulfonyl chloride), Boc (tert-butyloxycarbonyl), HATU (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate), NMM (N-methylmorpholine), DMAP (4-dimethylaminopyridine), TMSCl (trimethylsilyl chloride), LiHMDS (lithium bis(trimethylsilyl)amide), DMP (Dess–Martin periodinane)
      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Tetrahedron Chem
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Vries M.
        • Mohamed A.S.
        • Prescott R.A.
        • Valero-Jimenez A.M.
        • Desvignes L.
        • O'Connor R.
        • Steppan C.
        • Devlin J.C.
        • Ivanova E.
        • Herrera A.
        • Schinlever A.
        • Loose P.
        • Ruggles K.
        • Koralov S.B.
        • Anderson A.S.
        • Binder J.
        • Dittmann M.
        A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19.
        J. Virol. 2021; 95 (e01819–20)
        • Lamb Y.N.
        Nirmatrelvir Plus Ritonavir: First Approval.
        2022: 1-7 (Drugs)
        • Hoffman R.L.
        • Kania R.S.
        • Brothers M.A.
        • Davies J.F.
        • Ferre R.A.
        • Gajiwala K.S.
        • He M.
        • Hogan R.J.
        • Kozminski K.
        • Li L.Y.
        • Lockner J.W.
        • Lou J.
        • Marra M.T.
        • Mitchell Jr., L.J.
        • Murray B.W.
        • Nieman J.A.
        • Noell S.
        • Planken S.P.
        • Rowe T.
        • Ryan K.
        • Smith III, G.J.
        • Solowiej J.E.
        • Steppan C.M.
        • Taggart B.
        Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19.
        J. Med. Chem. 2020; 63: 12725-12747
        • Howe A.Y.M.
        • Venkatraman S.
        The discovery and development of boceprevir: a novel, first-generation inhibitor of the hepatitis C virus NS3/4A serine protease.
        J. Clin. Transl. Hepatol. 2013; 1: 22-32
      1. (a)
        • Donikela S.
        • Nayani K.
        • Mainkar P.S.
        • Chandrasekhar S.
        Gram scale solution-phase synthesis of heptapeptide side chain of teixobactin.
        Synlett. 2019; 30: 2268-2272
      2. (b)
        • Kallepu S.
        • Kavitha M.
        • Yeeravalli R.
        • Manupati K.
        • Jadav S.S.
        • Das A.
        • Mainkar P.S.
        • Chandrasekhar S.
        Total synthesis of desmethyl jahanyne and its lipo-tetrapeptide conjugates derived from parent skeleton as BCL-2-mediated apoptosis-inducing agents.
        ACS Omega. 2018; 3: 63-75
      3. (c)
        • Chandrasekhar S.
        • Kiranmai N.
        • Kiran M.U.
        • Devi A.S.
        • Reddy G.P.K.
        • Idris M.
        • Jagadeesh B.
        Novel helical foldamers: organized heterogeneous backbone folding in 1:1 α/Nucleoside-Derived–β-Amino acid sequences, chem.
        Commun. Now. 2010; 46: 6962-6964
      4. (d)
        • Jagannadh B.
        • Reddy M.S.
        • Rao C.L.
        • Prabhakar A.
        • Jagadeesh B.
        • Chandrasekhar S.
        Self-assembly of cyclic homo- and hetero-β-peptides with cis-furanoid sugar amino acid and β-hGly as building blocks.
        Chem. Commun. 2006; : 4847-4849
      5. (e)
        • Chandrasekhar S.
        • Reddy M.S.
        • Babu B.N.
        • Jagadeesh B.
        • Prabhakar A.
        • Jagannadh B.
        Expanding the conformational pool of cis-β-Sugar amino acid: accommodation of β-hGly motif in robust 14-helix.
        J. Am. Chem. Soc. 2005; 127 (and the references cited therein): 9664-9665
        • Venkatraman S.
        • Bogen S.L.
        • Arasappan A.
        • Bennett F.
        • Chen K.
        • Jao E.
        • Liu Y.-T.
        • Lovey R.
        • Hendrata S.
        • Huang Y.
        • Pan W.
        • Parekh T.
        • Pinto P.
        • Popov V.
        • Pike R.
        • Ruan S.
        • Santhanam B.
        • Vibulbhan B.
        • Wu W.
        • Yang W.
        • Kong J.
        • Liang X.
        • Wong J.
        • Liu R.
        • Butkiewicz N.
        • Chase R.
        • Hart A.
        • Agrawal S.
        • Ingravallo P.
        • Pichardo J.
        • Kong R.
        • Baroudy B.
        • Malcolm B.
        • Guo Z.
        • Prongay A.
        • Madison V.
        • Broske L.
        • Cui X.
        • Cheng K.-C.
        • Hsieh Y.
        • Brisson J.-M.
        • Prelusky D.
        • Korfmacher W.
        • White R.
        • Bogdanowich-Knipp S.
        • Pavlovsky A.
        • Bradley P.
        • Saksena A.K.
        • Ganguly A.
        • Piwinski J.
        • Girijavallabhan V.
        • Njoroge F.G.
        Discovery of (1R,5S)-N-[3-Amino-1-(Cyclobutylmethyl)-2,3-Dioxopropyl]- 3-[2(S)-[[[(1,1-Dimethylethyl)Amino]Carbonyl]Amino]-3,3-Dimethyl-1-Oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]Hexan-2(S)-Carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection.
        J. Med. Chem. 2006; 49: 6074-6086
        • Nair L.G.
        • Saksena A.
        • Lovey R.
        • Sannigrahi M.
        • Wong J.
        • Kong J.
        • Fu X.
        • Girijavallabhan V.
        A facile and efficient synthesis of 3,3-dimethyl isopropylidene proline from (+)-3-Carene.
        J. Org. Chem. 2010; 75: 1285-1288
        • Li T.
        • Liang J.
        • Ambrogelly A.
        • Brennan T.
        • Gloor G.
        • Huisman G.
        • Lalonde J.
        • Lekhal A.
        • Mijts B.
        • Muley S.
        • Newman L.
        • Tobin M.
        • Wong G.
        • Zaks A.
        • Zhang X.
        Efficient, chemoenzymatic process for manufacture of the boceprevir bicyclic [3.1.0]Proline intermediate based on amine oxidase-catalyzed desymmetrization.
        J. Am. Chem. Soc. 2012; 134: 6467-6472
        • Qiu X.
        • Qing F.
        Practical synthesis of boc-protected cis-4-trifluoromethyl and cis-4-Difluoromethyl-L-prolines.
        J. Org. Chem. 2002; 67: 7162-7164
      6. (a)
        • Qiu X.-L.
        • Qing F.-L.
        Synthesis of 3’-deoxy-3’-difluoromethyl azanucleosides from trans-4-hydroxy-L-proline.
        J. Org. Chem. 2005; 70: 3826-3837
      7. (b)
        • Priem C.
        • Geyer A.
        Synthetic marine sponge collagen by late-stage dihydroxylation.
        Org. Lett. 2018; 20: 162-165
      8. (c)
        • Flashman E.
        Evidence for a stereoelectronic effect in human oxygen sensing.
        Angew. Chem. Int. Ed. 2009; 48: 1784-1787
        • Werth J.
        • Uyeda C.
        Cobalt-catalyzed reductive dimethylcyclopropanation of 1,3-dienes.
        Angew. Chem. Int. Ed. 2018; 57: 13902-13906
      9. D.R. Owen, M.Y. Pettersson, M.R. Reese, M.F. Sammons, J.B. Tuttle, P.R. Verhoest, L. Wei, Q. Yang, X. Yang, Nitrile-containing Antiviral Compounds, Pfizer Inc. WO 2021/250648 A1.

      10. (a)
        • Rosso V.W.
        • Pazdan J.L.
        • Venit J.J.
        Rapid optimization of the hydrolysis of N′-Trifluoroacetyl-S-tert-leucine-N-methylamide using high-throughput.
        Chem. Dev. Techniq, Org. Process Res. Dev. 2001; 5: 294-298
      11. (b)
        • Li L.
        • Yang T.
        • Zhang T.
        • Zhu B.
        • Chang J.
        Organocatalytic asymmetric tandem cyclization/michael addition via oxazol-5(2H)-One formation: access to perfluoroalkyl-containing N,O-acetal derivatives.
        J. Org. Chem. 2020; 85: 12294-12303
      12. (a)
        • Hanessian S.
        • Margarita R.
        Tetrahedron Lett. 1998; 39: 5887-5890
      13. (b)
        • Tian Q.
        • Nayyar N.K.
        • Babu S.
        • Chen L.
        • Tao J.
        • Lee S.
        • Tibbetts A.
        • Moran T.
        • Liou J.
        • Guo M.
        • Kennedy T.P.
        An efficient synthesis of a key intermediate for the preparation of the rhinovirus protease inhibitor AG7088 via asymmetric dianionic cyanomethylation of N-Boc-L-(+)-glutamic acid dimethyl ester.
        Tetrahedron Lett. 2001; 42: 6807-6809
      14. (c)
        • Yang S.
        • Chen S.-J.
        • Hsu M.-F.
        • Wu J.-D.
        • Tseng C.-T.K.
        • Liu Y.-F.
        • Chen H.-C.
        • Kuo C.-W.
        • Wu C.-S.
        • Chang L.-W.
        • Chen W.-C.
        • Liao S.-Y.
        • Chang T.-Y.
        • Hung H.-H.
        • Shr H.-L.
        • Liu C.-Y.
        • Huang Y.-A.
        • Chang L.-Y.
        • Hsu J.-C.
        • Peters C.J.
        • Wang A.H.-J.
        • Hsu M.-C.
        Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.
        J. Med. Chem. 2006; 49: 4971-4980
      15. (a)
        • Reddy P.A.
        • Hsiang B.C.H.
        • Latifi T.N.
        • Hill M.W.
        • Woodward K.E.
        • Rothman S.M.
        • Ferrendelli J.A.
        • Covey D.F.
        3,3-Dialkyl- and 3-alkyl-3-benzyl-substituted 2-pyrrolidinones: a new class of anticonvulsant agents.
        J. Med. Chem. 1996; 39: 1898-1906
      16. (b)
        • Tian Q.
        • Nayyar N.K.
        • Babu S.
        • Chen L.
        • Tao J.
        • Lee S.
        • Tibbetts A.
        • Moran T.
        • Liou J.
        • Guo M.
        • Kennedy T.P.
        An efficient synthesis of a key intermediate for the preparation of the rhinovirus protease inhibitor AG7088 via asymmetric dianionic cyanomethylation of N-Boc-L-(+)-Glutamic acid dimethyl ester.
        Tetrahedron Lett. 2001; 42: 6807-6809
      17. (c)
        • Zhai Y.
        • Zhao X.
        • Cui Z.
        • Wang M.
        • Wang Y.
        • Li L.
        • Sun Q.
        • Yang X.
        • Zeng D.
        • Liu Y.
        • Sun Y.
        • Lou Z.
        • Shang L.
        • Yin Z.
        J. Med. Chem. 2015; 58: 9414-9420
      18. (a)
        • Talukdar S.
        • Hsu J.-L.
        • Chou T.-C.
        • Fang J.-M.
        Direct transformation of aldehydes to nitriles using iodine in ammonia water.
        Tetrahedron Lett. 2001; 42: 1103-1105
      19. (b)
        • Gálvez J.A.
        • Clavería-Gimeno R.
        • Galano-Frutos J.J.
        • Sancho J.
        • Velazquez-Campoy A.
        • Abian O.
        • Díaz-de-Villegas M.D.
        Stereoselective synthesis and biological evaluation as inhibitors of hepatitis C virus RNA polymerase of GSK3082 analogues with structural diversity at the 5-position.
        Eur. J. Med. Chem. 2019; 171: 401-419
        • Zhao Y.
        • Fang C.
        • Zhang Q.
        • Zhang R.
        • Zhao X.
        • Duan Y.
        • Wang H.
        • Zhu Y.
        • Feng L.
        • Zhao J.
        • Shao M.
        • Yang X.
        • Zhang L.
        • Peng C.
        • Yang K.
        • Ma D.
        • Rao Z.
        • Yang H.
        Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332.
        Protein Cell. 2021; : 1-5
        • Owen D.R.
        • Allerton C.M.N.
        • Anderson A.S.
        • Aschenbrenner L.
        • Avery M.
        • Berritt S.
        • Boras B.
        • Cardin R.D.
        • Carlo A.
        • Coffman K.J.
        • Dantonio A.
        • Di L.
        • Eng H.
        • Ferre R.A.
        • Gajiwala K.S.
        • Gibson S.A.
        • Greasley S.E.
        • Hurst B.L.
        • Kadar E.P.
        • Kalgutkar A.S.
        • Lee J.C.
        • Lee J.
        • Liu W.
        • Mason S.W.
        • Noell S.
        • Novak J.J.
        • Obach R.S.
        • Ogilvie K.
        • Patel N.C.
        • Pettersson M.
        • Rai D.K.
        • Reese M.R.
        • Sammons M.F.
        • Sathish J.G.
        • Singh R.S.P.
        • Steppan C.M.
        • Stewart A.E.
        • Tuttle J.B.
        • Updyke L.
        • Verhoest P.R.
        • Wei L.
        • Yang Q.
        • Zhu Y.
        An oral SARS-CoV-2 mpro inhibitor clinical candidate for the treatment of COVID-19.
        Science. 2021; 374: 1586-1593